ASE Labs
Welcome Guest. Please register or log in now. There are 196 people online (0 Friends).
  • Home
  • Articles
  • News
  • Forum
  • Register/Login

Made in IBM Labs: Breakthrough Chip Technology Lights the Path to Exascale Computing

Poster: SySAdmin
Posted on December 1, 2010 at 12:07:01 AM
Made in IBM Labs: Breakthrough Chip Technology Lights the Path to Exascale Computing

IBM Silicon Nanophotonics uses optical signals to connect chips together faster and with lower power

ARMONK, N.Y., Dec. 1, 2010 /PRNewswire/ -- IBM (NYSE: IBM) scientists today unveiled a new chip technology that integrates electrical and optical devices on the same piece of silicon, enabling computer chips to communicate using pulses of light (instead of electrical signals), resulting in smaller, faster and more power-efficient chips than is possible with conventional technologies.

(Logo: http://photos.prnewswire.com/prnh/20090416/IBMLOGO )

The new technology, called CMOS Integrated Silicon Nanophotonics, is the result of a decade of development at IBM's global Research laboratories. The patented technology will change and improve the way computer chips communicate - by integrating optical devices and functions directly onto a silicon chip, enabling over 10X improvement in integration density than is feasible with current manufacturing techniques.

IBM anticipates that Silicon Nanophotonics will dramatically increase the speed and performance  between chips, and further the company's ambitious Exascale computing program, which is aimed at developing a supercomputer that can perform one million trillion calculations--or an Exaflop--in a single second. An Exascale supercomputer will be approximately one thousand times faster than the fastest machine today.

"The development of the Silicon Nanophotonics technology brings the vision of on-chip optical interconnections much closer to reality," said Dr. T.C. Chen, vice president, Science and Technology, IBM Research. "With optical communications embedded into the processor chips, the prospect of building power-efficient computer systems with performance at the Exaflop level is one step closer to reality."

In addition to combining electrical and optical devices on a single chip, the new IBM technology can be produced on the front-end of a standard CMOS manufacturing line and requires no new or special tooling. With this approach, silicon transistors can share the same silicon layer with silicon nanophotonics devices. To make this approach possible, IBM researchers have developed a suite of integrated ultra-compact active and passive silicon nanophotonics devices that are all scaled down to the diffraction limit - the smallest size that dielectric optics can afford.

"Our CMOS Integrated Nanophotonics breakthrough promises unprecedented increases in silicon chip function and performance via ubiquitous low-power optical communications between racks, modules, chips or even within a single chip itself," said Dr. Yurii A. Vlasov, Manager of the Silicon Nanophotonics Department at IBM Research. "The next step in this advancement is to establishing manufacturability of this process in a commercial foundry using IBM deeply scaled CMOS processes."

By adding just a few more processing modules to a standard CMOS fabrication flow, the technology enables a variety of silicon nanophotonics components, such as: modulators, germanium photodetectors and ultra-compact wavelength-division multiplexers to be integrated with high-performance analog and digital CMOS circuitry.  As a result, single-chip optical communications transceivers can now be manufactured in a standard CMOS foundry, rather than assembled from multiple parts made with expensive compound semiconductor technology.

The density of optical and electrical integration demonstrated by IBM's new technology is unprecedented - a single transceiver channel with all accompanying optical and electrical circuitry occupies only 0.5mm(2) - 10 times smaller than previously announced by others. The technology is amenable for building single-chip transceivers with area as small as 4x4mm(2) that can receive and transmit over Terabits per second that is over a trillion bits per second.

The development of CMOS Integrated Silicon Nanophotonics  is the culmination of a series of related advancements by IBM Research that resulted in the development of deeply scaled front-end integrated Nanophotonics components for optical communications. These milestones include:

    --  March 2010, IBM announced a Germanium Avalanche Photodetector working at
        unprecedented 40Gb/s with CMOS compatible voltages as low as 1.5V. This
        was the last piece of the puzzle that completes the prior development of
        the "nanophotonics toolbox" of devices necessary to build the on-chip
        interconnects.
    --  March 2008, IBM scientists announced the world's tiniest nanophotonic
        switch for "directing traffic" in on-chip optical communications,
        ensuring that optical messages can be efficiently routed.
    --  December 2007, IBM scientists announced the development of an
        ultra-compact silicon electro-optic modulator, which converts electrical
        signals into the light pulses, a prerequisite for enabling on-chip
        optical communications.
    --  December 2006, IBM scientists demonstrated silicon nanophotonic delay
        line that was used to buffer over a byte of information encoded in
        optical pulses - a requirement for building optical buffers for on-chip
        optical communications.

The details and results of this research effort will be reported in a presentation delivered by Dr. Yurii Vlasov at the major international semiconductor industry conference SEMICON held in Tokyo on the December 1, 2010. The talk is entitled "CMOS Integrated Silicon Nanophotonics: Enabling Technology for Exascale Computational Systems" co-authored by William Green, Solomon Assefa, Alexander Rylyakov, Clint Schow, Folkert Horst, and Yurii Vlasov of IBM's T.J. Watson Research Center in Yorktown Heights, N.Y. and IBM Zurich Research Lab in Rueschlikon, Switzerland.

Additional information on the project can be found at http://www.research.ibm.com/photonics.

Attention Photo Editors: Photos are available on AP Photo Express and through Feature Photo Service's link on Newscom at http://www.newscom.com.

CONTACT: Chris Andrews of IBM, +1-914-945-1195, candrews@us.ibm.com

SOURCE  IBM

Photo:http://photos.prnewswire.com/prnh/20090416/IBMLOGO
http://photoarchive.ap.org/
IBM

CONTACT: Chris Andrews of IBM, +1-914-945-1195, candrews@us.ibm.com

Web Site: http://www.ibm.com
 
Print This Entry
Tags PR Press Release
Related Articles
  • Huntkey Has Launched Its New Power Strips with USB Chargers on Amazon US
  • Inspur Releases TensorFlow-Supported FPGA Compute Acceleration Engine TF2
  • Hot Pepper Introduces Spicy New Smartphones in US Markets
  • Sharp Introduces New Desktop Printers For The Advanced Office
  • DJI Introduces Mavic 2 Pro And Mavic 2 Zoom: A New Era For Camera Drones
Login
Welcome Guest. Please register or log in now.
Forgot your password?
Navigation
  • Home
  • Articles
  • News
  • Register/Login
  • Shopping
  • ASE Forums
  • Anime Threads
  • HardwareLogic
  • ASE Adnet
Latest News
  • Kingston HyperX Cloud 2 Pro Gaming Headset Unboxing
  • Synology DS415+ Unboxing
  • D-Link DCS-5020L Wireless IP Pan/Tilt IP Camera
  • Actiontec WiFi Powerline Network Extender Kit Unboxing
  • Durovis Dive Unboxing
  • Bass Egg Verb Unboxing
  • Welcome to the new server
  • Gmail Gets Optional Preview Pane
  • HBO Go on Consoles
  • HP Touchpad Update
Latest Articles
  • D-Link Exo AC2600 Smart Mesh Wi-Fi Router DIR-2660-US
  • HyperX Double Shot PBT Keys
  • Avantree ANC032 Wireless Active Noise Cancelling Headphones
  • ScharkSpark Beginner Drones
  • HyperX Alloy FPS RGB Mechanical Gaming Keyboard
  • D-Link DCS-8300LH Full HD 2-Way Audio Camera
  • Contour Unimouse Wireless Ergonomic Mouse
  • HyperX Cloud Alpha Pro Gaming Headset
  • Linksys Wemo Smart Home Suite
  • Fully Jarvis Adjustable Standing Desk
Latest Topics
  • Hello
  • Welcome to the new server at ASE Labs
  • Evercool Royal NP-901 Notebook Cooler at ASE Labs
  • HyperX Double Shot PBT Keys at ASE Labs
  • Avantree ANC032 Wireless Active Noise Cancelling Headphones at ASE Labs
  • ScharkSpark Beginner Drones at ASE Labs
  • HyperX Alloy FPS RGB Mechanical Gaming Keyboard at ASE Labs
  • D-Link DCS-8300LH Full HD 2-Way Audio Camera at ASE Labs
  • Kingston SDX10V/128GB SDXC Memory at ASE Labs
  • What are you listening to now?
  • Antec Six Hundred v2 Gaming Case at HardwareLogic
  • Sans Digital TR5UTP 5-Bay RAID Tower at HardwareLogic
  • Crucial Ballistix Smart Tracer 6GB PC3-12800 BL3KIT25664ST1608OB at HardwareLogic
  • Cooler Master Storm Enforcer Mid-Tower Gaming Case at HardwareLogic
  • Arctic M571-L Gaming Laser Mouse at ASE Labs
  • Contour Unimouse Wireless Ergonomic Mouse at ASE Labs
Advertisement
Advertisement
Press Release
  • Huntkey Has Launched Its New Power Strips with USB Chargers on Amazon US
  • Inspur Releases TensorFlow-Supported FPGA Compute Acceleration Engine TF2
  • Hot Pepper Introduces Spicy New Smartphones in US Markets
  • Sharp Introduces New Desktop Printers For The Advanced Office
  • DJI Introduces Mavic 2 Pro And Mavic 2 Zoom: A New Era For Camera Drones
  • DJI Introduces Mavic 2 Pro And Mavic 2 Zoom: A New Era For Camera Drones
  • Fujifilm launches "instax SQUARE SQ6 Taylor Swift Edition", designed by instax global partner Taylor Swift
  • Huawei nova 3 With Best-in-class AI Capabilities Goes on Sale Today
  • Rand McNally Introduces Its Most Advanced Dashboard Camera
  • =?UTF-8?Q?My_Size_to_Showcase_Its_MySizeId=E2=84=A2_Mobil?= =?UTF-8?Q?e_Measurement_Technology_at_CurvyCon_NYC?=
Home - ASE Publishing - About Us
© 2010 Aron Schatz (ASE Publishing) [Queries: 16 (8 Cached)] [Rows: 292 Fetched: 35] [Page Generation time: 0.010213136672974]